
Hard to Forget: Poisoning Attacks on Certified 
Machine Unlearning

Neil Marchant* Ben Rubinstein* Scott Alfeld†

*University of Melbourne †Amherst College

1. Summary

• Unlearning: fast methods to erase training data 
from models without full retraining

• Methods come with erasure guarantees, but 
lack bounds on computation

• Contribution: we propose a poisoning attack 
where strategically designed training data 
triggers full retraining when unlearned

2. What does it mean to unlearn?

• Certified unlearning: sanitized model is 
indistinguishable from full retraining [1]

• Computational efficiency is crucial: pointless if 
not more efficient than retraining

3. Adversarial setting

• Adversarial user can’t 
prevent erasure due 
to strong guarantees

• However, they could 
harm computational 
efficiency by 
contributing data 
that’s hard to unlearn

4. Poisoning attack on efficiency

• Adapt standard formulation of data poisoning 
as a bilevel optimization problem [2]

• Maximize the computational cost of unlearning 
poisoned data Dpsn from the defender’s trained 
model ĥ, while obeying validity constraints

Practical optimizations:
• Hold labels fixed in Dpsn

• 0-th order approximation of expectation
• Ignore model’s dependence on Dpsn

• Use surrogate for the computational cost

6. Empirical evaluation

Imperceptible perturbations
harm efficiency. Retrain 
interval (# erasure requests 
processed before retraining
triggered) drops sharply for 
ℓ1-bounded perturbations.

Effectiveness persists in a 
long-term setting, where 
unlearning continues after
retraining is triggered. 
Here the attacker poisons 
500 examples (0.83% of 
training set) and erases 
them sequentially.

5. Example: Attacking certified removal

• Certified removal [3]: unlearning for regularized 
linear models with (ε, δ)-indistinguishability

• Tries fast approx. update, but resorts to full 
retraining if indistinguishability can’t be assured

• Our attack forces the defender to retrain more 
often (slow path in the control flow below)

Contact: nmarchant@unimelb.edu.au
Code: github.com/ngmarchant/attack-unlearning
Extended paper: arXiv:2109.08266
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